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RecQL4: a helicase linking
formation and maintenance
of a replication fork
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RecQ family helicases are conserved from bacteria to
human. Across the species, they are known to be re-
quired for protecting genome from various genotoxic
stresses. In human, five RecQ-related helicases have
been identified and three of them, BLM, WRN and
RecQL4, have been shown to be responsible for genetic
disorders, Bloom, Werner and Rothmund-Thomson syn-
drome, respectively, which are characterized by cancer
predisposition and premature ageing. RecQL4, the
N-terminal portion of which shares similarity with
Sld2 known to be required for assembly of a replication
complex in yeasts, is unique in that it has been shown
to be essential for the initiation phase of normal DNA
replication. Recent biochemical characterization demo-
nstrated the 3'—5 DNA helicase activity associated
with RecQL4. Understanding the molecular basis for
how RecQ helicases are involved in generation and
maintenance of normal and stalled DNA replication
forks would be crucial to elucidation of the mechanisms
of replication initiation as well as to that of how the
loss of these conserved helicases leads to varieties of
disease phenotypes.

Keywords: Cancer predisposition/DNA helicase/
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Abbreviations: CMG, Cdc45-MCM-GINS; DSB,
double-stranded DNA breaks; GINS, Go-Ichi-Ni-San
for S1d5-Psf1-Psf2-Psf3; MCM, minichromosome
maintenance.

DNA helicases play important roles in various nucleic
acid transactions including DNA replication, tran-
scription, splicing, repair, recombination and others.
In eukaryotic DNA replication, the minichromosome

maintenance (MCM) complex composed of six sub-
units of related structures plays a central role as a rep-
licative helicase. This notion was first indicated by the
discovery of DNA helicase activity associated with
the purified MCM4-6-7 complex (/). At the fork, the
MCM2~7 complex may be associated with Cdc45 and
S1d5-Psf1-Psf2-Psf3 (GINS), thus generating a bigger
complex [CMG (Cdc45-MCM-GINS)] that is capable
of efficient unwinding of duplex DNA (2) (Fig. 1A).

RecQ-related helicases are highly conserved through
evolution. RecQ of Escherichia coli is known to be
required for processing of stalled replication forks for
genome stabilization (3). In human, five RecQ-related
helicases have been identified and they have been
shown to be required for maintenance of genomic in-
tegrity through their participation in DNA replication,
recombination and repair (Fig. 1B). They are believed
to play particularly important roles when replication
forks are stalled by DNA damages or other genotoxic
agents (4). Among them, mutations in BLM, WRN
and RecQL4 were shown to cause cancer-predisposed
genetic diseases, Bloom, Werner and Rothmund-
Thomson syndrome, respectively. The patients suffer-
ing from these syndromes also exhibit premature
ageing.

RecQL4, known to be frequently mutated in
Rothmund-Thomson and Baller-Gerold syndromes
(5), has a unique structural feature. Its N-terminal seg-
ment shares distinct similarity to Sld2 protein, known
to be required for recruitment of DNA polymerases to
the replication complex (6) (Fig. 1A). Indeed, immu-
nodepletion of RecQL4 protein in Xenopus egg ex-
tracts lead to loss of DNA replication activity (6, 7).
RecQL4 was reported to be required for chromatin
binding of DNA polymerase o in DNA replication in
Xenopus egg extracts (7). In human cells, RecQL4 was
shown to be required for assembly of CMG complex
(8). RecQL4 was also reported to interact with
MCM2~7, MCM10, Cdc45 and GINS, and MCM10
is required for efficient interaction between MCM and
RecQL4 (9) (Fig. 1B). Analyses in human cells, DT40
(a chicken B lymphocyte line), and Xenopus egg ex-
tracts indicated the roles of RecQL4 protein in vari-
ous cellular responses to stalled replication fork
including S-phase arrest (/0), double-stranded DNA
breaks (DSB) repair (11, 12), nucleotide excision repair
(13), base excision repair (/4) and oxidative stress
responses (135).

In Xenopus egg extracts, the N-terminal 596 amino
acid segment devoid of DNA helicase domain is suffi-
cient for efficient DNA replication (7). In DT40 cells,
the cell viability can be maintained by the N-terminal
domain lacking the helicase domain, although the
cells expressing only the N-terminal domain are sensi-
tive to genotoxic agents (/6). On the other hand, in
Drosophila, helicase-dead point mutant RecQL4
could not rescue the null mutant, indicating that
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Fig. 1 Sld2/ RecQLA4 in initiation and replication fork complexes. (A) A putative initiation complex at replication origin. The model is based on
yeast results and nomenclatures use those in budding yeast. Sld2, bound to Dpbl1 in a CDK-phosphorylation-dependent manner, recruits GINS
and DNA polymerase ¢ to origins (22). Similarly, RecQL4 facilitates the assembly of CMG complex at origins. Although Dpbl1 is essential for
bringing GINS and DNA polymerase ¢ to the origin complex, it is not known whether TopBP1 plays similar roles in mammalian cells. (B) A
putative replication fork complex. Nomenclatures are those in mammalian cells. RecQL4 interacts with MCM2~7, MCM 10, Cdc45 and GINS
and may stabilize the replication fork complex. Upon replication fork stalling, RecQL4 may facilitate various checkpoint/repair processes

including S-phase arrest (/0), DSB repair (11, 12) and nucleotide/base excision repair (13, /4). DNA helicase activity of RecQL4 is likely to play

a crucial role at least in this process of stalled fork response.

DNA helicase activity is essential for viability of higher
eukaryotes (17).

Early report on biochemical characterization of
RecQL4 showed DNA-dependent ATPase activity
and strand annealing activity, but helicase activity
was not detected (/8). However, more recently, DNA
helicase activity was detected in RecQL4 in reactions
containing excess single-stranded DNA to prevent
reannealing (/9). Furthermore, two distinct segments
of the protein, the conserved helicase domain and the
Sld2-like N-terminal domain, independently exhibited
DNA helicase activity (/9). However, Ishimi’s group
at Ibaraki University discovered that the purified
RecQL4 could displace the annealing single-stranded
DNA without added single-stranded DNA (20).
Interestingly, requirement for ATP and magnesium
concentrations was different between helicase and
ATPase measurements. Higher concentration of ATP
was required for helicase assays. It was suggested that
previous failure in detecting helicase activity may be
due to the low concentration of ATP used in the assays
(20). RecQL4 could displace 17-mer but not 37- or
53-mers, indicative of its low processivity. The move-
ment of the helicase was from 3’ to 5/, consistent with
other RecQ helicases (20). The helicase activity of
RecQL4 was confirmed later by another report (21).
In this report, helicase activity was shown to be inacti-
vated by a mutation in the conserved helicase domain,
suggesting that the helicase domain is responsible for the
observed helicase activity. RecQL4 from Drosophila was
also shown to possess 3'—5 helicase activity as well as
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single-strand DNA annealing activity (/7). A point
mutation replacing a conserved lysine with asparagine
leads to complete loss of helicase activity, but not
single-strand DNA annealing activity. This also indi-
cates the presence of a unique DNA helicase domain in
RecQL4. The discrepancy from the other report (/9)
needs to be clarified by future studies.

Crucial questions remaining include the precise roles
of the N-terminal Sld2-releated domain and the
C-terminal helicase domain and how the helicase ac-
tivity of RecQL4 may contribute to the initiation event
as well as to the regulation of stalled replication fork.
In yeast, Cdk-dependent phosphorylation of SId2
facilitates its binding to Dpbll, which then recruits
DNA polymerase & (22). In Xenous egg extracts,
RecQL4 is required for chromatin loading of DNA
polymerase o (7). In human cells, RecQL4 appears to
be required for assembly of the helicase complex con-
taining MCM, Cdc45 and GINS (8). MCMI10 also
plays important roles in this process by directly interact-
ing with RecQL4 (9). It remains to be seen whether
RecQLA4 is a target of CDK for loading of other factors.

These results indicate that at least two active heli-
cases, MCM and RecQL4, are involved in initiation of
DNA replication in higher eukaryotes. It is an intri-
guing possibility that both are involved at the replica-
tion fork for unwinding of duplex DNA. Indeed, a
putative helicase-defective mutant (D605A) of
RecQL4 could not restore the replication in RecQL4-
depleted Xenopus egg extracts (6). However, at the
moment, there is no strong evidence that shows the
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constitutive localization of RecQL4 at the active repli-
cation fork. The distributive nature of RecQL4 heli-
case (20) is also unsuitable for a replicative helicase
at the fork. Furthermore, some reports show that ini-
tiation and repair functions could be separable in
RecQL4 and only the N-terminal domain lacking the
helicase domain could be sufficient for DNA replica-
tion (7, 16). Thus, it may be more likely that the heli-
case activity of RecQL4 may be specialized in the
rescue of stalled replication fork. Alternatively, it
may also contribute to the initial unwinding step at
the replication origin. In either case, the joining of
two functionally independent domains in RecQL4
may facilitate the coupling of initiation events to the
fork maintenance activities in the DNA chain elong-
ation phase.
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